La sucesión de Fibonacci
La sucesión de Fibonacci es la sucesión de números:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
Cada número se calcula sumando los dos anteriores a él.
- El 2 se calcula sumando (1+1)
- Análogamente, el 3 es sólo (1+2),
- Y el 5 es (2+3),
- ¡y sigue!
Ejemplo: el siguiente número en la sucesión de arriba sería (21+34) = 55
¡Así de simple!
Aquí tienes una lista más larga:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, ...
¿Puedes encontrar los siguientes números?
La regla
La sucesión de Fibonacci se puede escribir como una "regla" (lee sucesiones y series):
la regla es xn = xn-1 + xn-2
donde:
- xn es el término en posición "n"
- xn-1 es el término anterior (n-1)
- xn-2 es el anterior a ese (n-2)
Por ejemplo el sexto término se calcularía así:
x6 = x6-1 + x6-2 = x5 + x4 = 5 + 3 = 8
TOMADO DE:ww.disfrutalasmatematicas.com/numeros/fibonacci-sucesion.html

TOMADA DE; http://csrg.inf.utfsm.cl/~rbonvall/progra-ust-2010-1/_images/k-fibonacci.png
NUMEROS FACTORIALES:
Factorial !
![]() |
La función factorial (símbolo: !) sólo quiere decir que se multiplican una serie de números que descienden. Ejemplos:
|
![]() |
"4!" normalmente se pronuncia "4 factorial". También se puede decir "factorial de 4"
|
Calculando desde el valor anterior
Es fácil calcular un factorial desde el valor anterior:
n | n! | ||
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 2 × 1 | = 2 × 1! | = 2 |
3 | 3 × 2 × 1 | = 3 × 2! | = 6 |
4 | 4 × 3 × 2 × 1 | = 4 × 3! | = 24 |
5 | 5 × 4 × 3 × 2 × 1 | = 5 × 4! | = 120 |
6 | etc | etc |
Ejemplo: ¿Cuánto es 10! si ya sabes que 9!=362.880 ?
10! = 10 × 9!
10! = 10 × 362.880 = 3.628.800
Así que la regla es:
n! = n × (n-1)!
lo que significa "el factorial de cualquier número es: el número por el factorial de (1 menos que el número", por tanto 10! = 10 × 9!, o incluso 125! = 125 × 124!
Qué pasa con "0!"
El factorial de cero es interesante... se suele estar de acuerdo en que 0! = 1.
Parece raro que no multiplicar ningún número dé 1, pero ayuda a simplificar muchas cuestiones.
¿Dónde se usa el factorial?
Los factoriales se usan en muchas áreas de las matemáticas, pero sobre todo en combinaciones y permutaciones
Una pequeña lista
n | n! |
---|---|
0 | 1 |
1 | 1 |
2 | 2 |
3 | 6 |
4 | 24 |
5 | 120 |
6 | 720 |
7 | 5.040 |
8 | 40.320 |
9 | 362.880 |
10 | 3.628.800 |
11 | 39.916.800 |
12 | 479.001.600 |
13 | 6.227.020.800 |
14 | 87.178.291.200 |
15 | 1.307.674.368.000 |
16 | 20.922.789.888.000 |
17 | 355.687.428.096.000 |
18 | 6.402.373.705.728.000 |
19 | 121.645.100.408.832.000 |
20 | 2.432.902.008.176.640.000 |
21 | 51.090.942.171.709.400.000 |
22 | 1.124.000.727.777.610.000.000 |
23 | 25.852.016.738.885.000.000.000 |
24 | 620.448.401.733.239.000.000.000 |
25 | 15.511.210.043.331.000.000.000.000 |
¡Como ves, crecen muy rápido!
Algunas valores muy grandes
70! es aproximadamente 1,1978571669969891796072783721 x 10100, que es un poco más grande que un Gúgol (un 1 seguido de 100 ceros).
100! es aproximadamente 9,3326215443944152681699238856 x 10157
200! es aproximadamente 7,8865786736479050355236321393 x 10374
¿Y los decimales?
¿Puedes calcular factoriales de 0,5 o -3,217?
¡Sí que puedes! Pero tienes que usar algo que se llama "función Gamma", y que es mucho más complicado que lo que tratamos aquí.
Factorial de un medio
Lo que sí te puedo decir es que el factorial de un medio (½) es la mitad de la raíz cuadrada de pi = (½)√π, y que los factoriales de algunos "semienteros" son:
n | n! |
---|---|
(-½)! | √π |
(½)! | (½)√π |
(3/2)! | (3/4)√π |
(5/2)! | (15/8)√π |
Y todavía complen la regla deque "el factorial de un número es: el número por el factorial de (1 menos que el número)", por ejemplo
(3/2)! = (3/2) × (1/2)!
(5/2)! = (5/2) × (3/2)!
(5/2)! = (5/2) × (3/2)!
TOMADO DE: http://www.disfrutalasmatematicas.com/numeros/factorial.html

TOMADA DE: https://luiscastellanos.files.wordpress.com/2008/04/factorial.jpg
No hay comentarios.:
Publicar un comentario